Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
COVID ; 2(4):501-512, 2022.
Article in English | MDPI | ID: covidwho-1792789

ABSTRACT

In November of 2021, a recently evolved variant of SARS-CoV-2, omicron, was discovered. In just one month, omicron has spread to more than 89 countries resulting in a rapid rise in cases and a new wave of infections. With over 46 mutations, omicron brings concern to the public health and may be able to infect at a greater capacity than previous strains. Although able to infect double vaccinated and previously infected individuals, the booster vaccine may prove promising. However, more research is needed to fully elucidate the key function of each mutation and to better develop effective drugs. Marine resources may be a promising drug discovery avenue to investigate. For example, compounds such as natural bromotyrosines and inorganic polyphosphate have been shown to have multiple mechanisms of action against viruses, like SARS-CoV-2. Through viral entry blockade and preventing viral replication and protein synthesis, metabolites produced from marine organisms may be promising against the evolving SARS-CoV-2. The present review highlights key features of the omicron SARS-CoV-2 variant, summarizes key studies and reports on omicron viral infection and examines the potential for intervention using renewable marine resources.

2.
Polysaccharides ; 3(1):83, 2022.
Article in English | ProQuest Central | ID: covidwho-1760802

ABSTRACT

Didymosphenia geminata is a species of freshwater diatom that is known as invasive and is propagating quickly around the world. While invasive species are generally considered a nuisance, this paper attempts to find useful applications for D. geminata in the biomedical field and wastewater remediation. Here, we highlight the polysaccharide-based stalks of D. geminata that enable versatile potential applications and uses as a biopolymer, in drug delivery and wound healing, and as biocompatible scaffolding in cell adhesion and proliferation. Furthermore, this review focuses on how the polysaccharide nature of stalks and their metal-adsorption capacity allows them to have excellent wastewater remediation potential. This work also aims to assess the economic impact of D. geminata, as an invasive species, on its immediate environment. Potential government measures and legislation are recommended to prevent the spread of D. geminata, emphasizing the importance of education and collaboration between stakeholders.

3.
Mar Drugs ; 19(8)2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1325730

ABSTRACT

The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.


Subject(s)
Antiviral Agents/chemistry , Aquatic Organisms/chemistry , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Humans , Polyphosphates/pharmacology , Polyphosphates/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL